超新星・突発現象研究の現状と今後: High-z and low-z

Cosmology Star Formation History Stellar Evolution Explosion Physics

SN Feedback Metal, Dust, Cosmic Ray, ...

Keiichi Maeda (Kavli IPMU, U. Tokyo)

Exploring high-z and z-evolution

Super-Luminous SNe (SLSNe): Massive star(?) < - 21 mag, long lasting (~ year)

Cooke+ 2012, CFHT Legacy Deep (stacking)

SN Ia: White Dwarf ~ - 19 - 20 mag, ~ month

Rubin+ 2013, HST survey + spec. (8 orbits)

Exploring high-z and z-evolution

SN rate - SFR

Delay time (progenitors' life time)

SFR tracer? (\Rightarrow Star formation, Galaxy evolution) Different SN populations? (\Rightarrow Stellar evolution) Change in SN properties? (\Rightarrow Cosmology)

High-z SNe @ optical (future)

Moriya+ 2012; Tanaka+ 2012

z=2

z=3

z=4

z=5

7=6

Shock

SNe IIp

0.5

0

 $20M_{\odot}$ E₅₁=1, Z=0.02

breakout in

(from RSG)

1.5

SLSNe

HSC survey expectation (Yasuda+) 8m-survey ⇒ spec. requires 30-m class. TMT in the future (or JWST).

Tominaga+ 2011

23

24

25

26

27

28

29

30

100

z = 3

200

z =/5

300

arbitra

(d)

apparent AB magnitude (i band)

Evolution w/ redshift?

Evolution in rest "UV"? Local sample limited. ⇒ Rest flame "optical" (used for cosmology), need 30m (or NIR space).

SN la Cosmology

Future: w... cosmological constant or not?

Ground, optical: DES, HSC, LSST (+ spec., TMT in the future?) Space, NIR: WFIRST, WISH (Ground, NIR at z < 0.2?: TAO... calibration sample, K-cor. etc.)

0.5

Causes of systematics?

Description	Ω_m	w
Stat only	$0.19\substack{+0.08\\-0.10}$	$-0.90^{+0.16}_{-0.20}$
All systematics	0.18 ± 0.10	$-0.91^{+0.17}_{-0.24}$
Calibration	$0.191\substack{+0.095\\-0.104}$	$-0.92^{+0.17}_{-0.23}$
SN model	$0.195\substack{+0.086\\-0.101}$	$-0.90^{+0.16}_{-0.20}$
Peculiar velocities	$0.197\substack{+0.084\\-0.100}$	$-0.91\substack{+0.16\\-0.20}$
Malmquist bias	$0.198\substack{+0.084\\-0.100}$	$-0.91\substack{+0.16\\-0.20}$
non-Ia contamination	$0.19\substack{+0.08\\-0.10}$	$-0.90\substack{+0.16\\-0.20}$
MW extinction correction	$0.196\substack{+0.084\\-0.100}$	$-0.90\substack{+0.16\\-0.20}$
SN evolution	$0.185\substack{+0.088\\-0.099}$	$-0.88^{+0.15}_{-0.20}$
Host relation	$0.198^{+0.085}_{-0.102}$	$-0.91^{+0.16}_{-0.21}$

Intrinsic variation in explosion mech. can mimic extinction.

Studying local samples will be kept important.

Systematics.

– How and where ?

- Extinction?
- Different Populations?

- z-evolution, host-depend.?

Line shift in latephase (intrinsic)

HSC, PFS

Rest-frame NIR SN Ia Cosmology

Clarifying natures @ low-z

Wide-field Untargeted

Example: PTF Survey: 1.2m, 7 deg² (~ KISS) Identification: 1.5m, Iow-R IFU Follow-up: Keck etc. Filling up time-luminosity space

Expected future upgrade: Survey 7 deg²⇒40 deg² ... will fully "kill" the local Universe transient space? (both in time and luminosity)

Just after the explosion

Cao+ 2013, SN lbc iPTF13bvn Progenitor < a few $R_{\odot} \Rightarrow WR$ Bersten+ 2012, SN IIb 2011dh $\sim 250R_{\odot} \Rightarrow$ Yellow supergiant

Quick follow-up by 1m: e.g., OISTER

Just after the explosion

Quick ToO by 2 - 4m. Kyoto 3.8m

SNe IIp (RSG progenitor)

Shock breakout Surface composition Unexplained features ⇒ Important for theory

SNe la

How progenitor-SN properties related?

Future (on-going): Unbiased + large sample \Rightarrow IMF, single/binary evolution, etc.

Intensive follow-up required. Resource will be on-line (Kyoto, TAO). Strategy? (for competition)

Explosion Mechanism (~ 1 year)

Explosion Mechanism (~ 1 year in IR)

NIR is better (e.g., less blending than opt)
⇒ IRCS+AO188 for 8 nights in 2011-2012 (KM+, to come),
but limited to a few very nearby SNe ⇒ TMT?

Can also be done in mid-IR. (almost no blending, very low temperature regions).

SPICA (also strong for dust: Tanaka+ 2012)

Dust Formation... Origin of dust in Universe

A minute of dust formation... NIR (~1000 – 2000K) Photometry is OK, but spectra provide complete view. (e.g., dust size + optical depth require spectra). Optical also necessary. TAO, kyoto 3.8m (but south and north)

Synergy w/ High Energy Astrophysics

- SN-GRB relation (z < 0.2 w/ 8m, z > 1 w/ 30m).
- Hard X, soft-γ
 - Radioactive decay emission (only SN 1987A so far).
 - Nearby SNe Ia possible w/ Astro-H (2015-) (KM+ 2012)

SN la standard candle

Shock breakout

- Radio, soft X Progenitor
 - Mass loss + particle acceleration (KM 2012, 2013).
 - Speed of breakout shock wave (KM 2013)
 - A few program running.
 - KM+, Alma cycle 1; Alak+, Chandra + VLA cycle 15.
 - ALMA, SKA, ...

Summary

- High redshift.
 - SN populations and evolution. SFR.
 - SN Ia Cosmology. Rest-NIR. Systematics (low-z).
 - Main drivers HSC + upcoming (in relatively long term).
- Low redshift.
 - Basis for high-z study.
 - Surveys begin filling up "t-L" space.
 - Intensive follow-up required \Rightarrow unbiased picture.
 - Lots of question... progenitor, explosion.
 - Main drivers existing and near future.